Courses. Trigonometric functions describe the relationship between the sides and angles of a right-angled triangle. The trigonometric functions include sine, cosine, tangent, cotangent, secant, and cosecant. There also are inverse trigonometric functions for all Trigonometric functions. Trigonometric functions and their LaTex Code –. UWAGA !!!+ lub - wybieramy zależnie od tego, do której ćwiartki należy ramię końcowe kąta α / 2 gdy sinα ≠ 0 gdy sinα ≠ 0FUNKCJE TRYGONOMETRYCZNE SUMY I RÓŻNICY KĄTÓW sin(α + β) = sinαcosβ + cosαsinβ cos(α + β) = cosαcosβ - sinαsinβ sin(α - β) = sinαcosβ - cosαsinβ cos(α - β) = cosαcosβ + sinαsinβ gdy cosα ∙ cosβ oraz cos(α + β) ≠ 0 gdy sinα ∙ sinβ oraz sin(α + β) ≠ 0 gdy cosα ∙ cosβ oraz cos(α - β) ≠ 0 gdy sinα ∙ sinβ oraz sin(α - β) ≠ 0SUMA I RÓŻNICA FUNKCJI TRYGONOMETRYCZNYCH gdy cosα ∙ cosβ ≠ 0 gdy sinα ∙ sinβ ≠ 0 gdy cosα ∙ cosβ ≠ 0 gdy sinα ∙ sinβ ≠ 0POZOSTAŁE ZALEŻNOŚCI sin2α - sin2β = sin(α + β)sin(α - β) cos2α - sin2β = cos(α + β)cos(α - β) cos2α - cos2β = sin(α + β)sin(β - α) sinα + cosα = √2 sin(450 + α) = √2 cos(450 - α) cosα - sinα = √2 cos(450 + α) = √2 sin(450 - α) cosαcosβ = 1/2 [cos(α + β) + cos(α - β)] sinαsinβ = 1/2 [cos(α - β) - cos(α + β)] sinαcosβ = 1/2 [sin(α + β) + cos(α - β)]Dla każdego kąta α, dla którego istnieje tgα, tgα/2 i ctgα/2 prawdziwe są związki: Sine, Cosine, and Tangent Table: 0 to 360 degrees Degrees Sine Cosine Tangent Degrees Sine Cosine Tangent Degrees Sine Cosine Tangent 0 0.0000 1.0000 0.0000 60 0.8660 0.5000 1.7321 120 0.8660 ‐0.5000 ‐1.7321 1 0.0175 0.9998 0.0175 61 0.8746 0.4848 1.8040 121 0.8572 ‐0.5150 ‐1.6643 Jedynka trygonometryczna Dla dowolnego kąta \(\alpha \) zachodzi równanie: \[\sin^{2} \alpha +\cos^{2} \alpha =1\] Dowód jedynki trygonometrycznej dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt ostry \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \left ( \frac{a}{c} \right )^2+\left ( \frac{b}{c} \right )^2=\frac{a^2}{c^2}+\frac{b^2}{c^2}=\frac{a^2+b^2}{c^2}\] Z twierdzenia Pitagorasa wiemy, że: \[a^2+b^2=c^2\] Zatem: \[\sin^{2} \alpha +\cos^{2} \alpha = \frac{a^2+b^2}{c^2} = \frac{c^2}{c^2}=1. \ _\blacksquare \] Wyjaśnienie sposobu zapisu Wyrażenie \(\sin^{2} \alpha\), to \(\sin \alpha \) podniesiony do drugiej potęgi. Czyli: \[\sin^{2} \alpha = (\sin \alpha)^2\] Zatem np. \(\sin \alpha = \frac{2}{3}\), to: \(\sin^{2} \alpha = \left ( \frac{2}{3} \right )^2=\frac{4}{9}\). Analogicznie interpretujemy \(\cos^{2} \alpha, \operatorname{tg}^2 \alpha \text{ i }\operatorname{ctg}^2\alpha \) oraz wyższe potęgi funkcji trygonometrycznych. Wzory na tangens i cotangens. Dla dowolnego kąta \(\alpha \) (dla którego funkcje trygonometryczne są określone) zachodzą wzory: \(\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =1\) \(\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\) \(\operatorname{ctg} \alpha =\frac{\cos \alpha }{\sin \alpha }\) Powyższe wzory są prawdziwe dla każdego kąta ostrego \(\alpha \) oraz dla wszystkich kątów, dla których funkcje są określone (tzn. nie pojawia się dzielenie przez \(0\) w mianowniku). Dowód wzorów dla kąta ostrego w trójkącie prostokątnym Weźmy dowolny trójkąt prostokątny i zaznaczmy w nim kąt \(\alpha \). Z definicji funkcji trygonometrycznych wiemy, że: \[\sin \alpha =\frac{a}{c}\qquad \text{oraz}\qquad \cos \alpha =\frac{b}{c}\qquad \text{oraz}\qquad\operatorname{tg} \alpha =\frac{a}{b}\qquad \text{oraz}\qquad \operatorname{ctg} \alpha =\frac{b}{a}\] Zatem: \[\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha =\frac{a}{b}\cdot \frac{b}{a}=1\] oraz: \[\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{a}{c}}{\frac{b}{c}}=\frac{a}{c}\cdot \frac{c}{b}=\frac{a}{b}=\operatorname{tg} \alpha \] a także: \[\frac{\cos \alpha }{\sin \alpha }=\frac{\frac{b}{c}}{\frac{a}{c}}=\frac{b}{c}\cdot \frac{c}{a}=\frac{b}{a}=\operatorname{ctg} \alpha. \ _\blacksquare\] Gdy znamy wartość przynajmniej jednej funkcji trygonometrycznej, to za pomocą powyższych wzorów możemy obliczyć wartości wszystkich pozostałych funkcji trygonometrycznych. Oblicz \(\sin \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\cos \alpha =\frac{1}{3}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\sin^{2} \alpha +\left ( \frac{1}{3} \right )^2 &= 1\\[10pt]\sin^{2} \alpha +\frac{1}{9} &= 1\\[10pt]\sin^{2} \alpha &= \frac{8}{9}\\[10pt]\sin \alpha &=\sqrt{\frac{8}{9}} = \frac{\sqrt{8}}{3} = \frac{2\sqrt{2}}{3} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2\sqrt{2}}{3}}{\frac{1}{3}}=\frac{2\sqrt{2}}{3}\cdot \frac{3}{1}=2\sqrt{2}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{2\cdot 2}=\frac{\sqrt{2}}{4}\] Oblicz \(\cos \alpha \text{, }\operatorname{tg} \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\sin \alpha =\frac{2}{5}\). Korzystamy z jedynki trygonometrycznej: \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &= 1\\[10pt]\left ( \frac{2}{5} \right )^2+\cos^{2} \alpha &= 1\\[10pt]\frac{4}{25}+\cos^{2} \alpha &= 1\\[10pt]\cos^{2} \alpha &= \frac{21}{25}\\[10pt]\cos \alpha &=\sqrt{\frac{21}{25}}=\frac{\sqrt{21}}{5} \end{split}\] Teraz obliczamy tangens: \[\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }=\frac{\frac{2}{5}}{\frac{\sqrt{21}}{5}}=\frac{2}{5}\cdot \frac{5}{\sqrt{21}}=\frac{2}{\sqrt{21}}=\frac{2\sqrt{21}}{21}\] Teraz obliczamy cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{\frac{2}{\sqrt{21}}}=\frac{\sqrt{21}}{2}\] Oblicz \(\sin \alpha \text{, }\cos \alpha \text{ i }\operatorname{ctg} \alpha \) jeśli wiesz, że \(\operatorname{tg} \alpha =7\). Najłatwiej jest wyliczyć cotangens: \[\operatorname{ctg} \alpha =\frac{1}{\operatorname{tg} \alpha }=\frac{1}{7}\] Teraz skorzystamy ze wzoru na tangens oraz jedynki trygonometrycznej i ułożymy układ równań z dwiema niewiadomymi. Tymi niewiadomymi będą oczywiście szukane \(\sin \alpha \text{ i }\cos \alpha \). \[\begin{split} &\begin{cases}\operatorname{tg} \alpha =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \\[10pt]&\begin{cases}7 =\frac{\sin \alpha }{\cos \alpha }\\\sin^{2} \alpha +\cos^{2} \alpha =1\end{cases} \end{split}\] Z pierwszego równania możemy wyliczyć np. \(\sin \alpha \): \[\begin{split} 7 &=\frac{\sin \alpha }{\cos \alpha }\\[6pt]7\cos \alpha &=\sin \alpha \\[6pt]\sin \alpha &=7\cos \alpha \end{split}\] Teraz wyznaczonego sinusa możemy podstawić do jedynki trygonometrycznej. W rezultacie otrzymamy równanie z jedną niewiadomą ( \(\cos \alpha \) ): \[\begin{split} \sin^{2} \alpha +\cos^{2} \alpha &=1\\[6pt](7\cos \alpha )^2 +\cos^{2} \alpha &=1\\[6pt]49 \cos^{2} \alpha +\cos^{2} \alpha &=1\\[6pt]50 \cos^{2} \alpha &=1\\[6pt]\cos^{2} \alpha &=\frac{1}{50}\\[6pt]\cos \alpha &=\sqrt{\frac{1}{50}}=\frac{\sqrt{50}}{50}=\frac{5\sqrt{2}}{50}=\frac{\sqrt{2}}{10} \end{split}\] Teraz wyliczymy sinus korzystając z wyznaczonego wcześniej wzoru: \[\sin \alpha =7\cos \alpha =7\cdot \frac{\sqrt{2}}{10}=\frac{7\sqrt{2}}{10}\] 三角関数 (さんかくかんすう、 英: trigonometric function )とは、平面 三角法 における、 角 の大きさと 線分 の長さの関係を記述する 関数 の 族 、およびそれらを拡張して得られる関数の総称である。. 鋭角 を扱う場合、三角関数の値は対応する 直角三角形 Poni¿sze wzory s± prawdziwe dla dowolnych α i β. oprócz tych, dla których tgα, tgβ ctgα, ctgβ jest nieokre¶lony. Podstawowe to¿samo¶ci trygonometryczne tgα = sinαcosα = 1ctgα ctgα = cosαsinα = 1tgα sin2α + cos2α = 1 (jedynka trygonometryczna) tgα · ctgα = 1 Funkcje k±ta podwójnego sin2α = 2sinαcosα cos2α = cos2α - sin2α = 2cos2α - 1 tg2α = 2 tgα 1 - tg 2 α ctg2α = ctg 2 α - 1 2 ctgα Funkcje po³owy k±ta sin α 2 = ± 1-cosα 2 cos α 2 = ± 1+cosα 2 Znak + lub - wybieramy zale¿nie od tego, do której æwiartki nale¿y koñcowe ramiê k±ta π2. tg α 2 = 1-cosα sinα ctg α 2 = 1+cosα sinα Funkcje trygonometryczne sumy i ró¿nicy k±tów sin(α + β) = sinαcosβ + cosαsinβ cos(α + β) = cosαcosβ - sinαsinβ sin(α - β) = sinαcosβ - cosαsinβ cos(α - β) = cosαcosβ + sinαsinβ tg(α + β) = tgα + tgβ 1 - tgα · tgβ ctg(α + β) = ctgα · ctgβ - 1 ctgα + ctgβ tg(α - β) = tgα - tgβ 1 + tgα · tgβ ctg(α - β) = ctgα · ctgβ + 1 ctgα - ctgβ . Suma i ró¿nica funkcji trygonometrycznych sinα + sinβ = 2sin α + β 2 · cos α - β 2 cosα + cosβ = 2cos α + β 2 · cos α - β 2 sinα - sinβ = 2sin α - β 2 · cos α + β 2 cosα - cosβ = - 2sin α + β 2 · sin α - β 2 tgα + tgβ = sin ( α + β ) cos α · cos β ctgα + ctgβ = sin ( α + β ) sin α · sin β tgα - tgβ = sin ( α - β ) cos α · cos β ctgα - ctgβ = sin ( α - β ) sin α · sin β Seno, Coseno y Tangente (a menudo abreviadas como sen -o sin, del inglés sine-, cos y tan) son cada una una proporción de los lados de un triángulo rectángulo: Para un ángulo dado θ cada proporción permanece igual no importa cuán grande o pequeño sea el triángulo. Para calcularlas: Funkcja trygonometryczna sinus Wykres funkcji y=sin x Własności: Parzystość Funkcja sinus jest nieparzysta Dziedzina x∈ R (zbiór liczb rzeczywistych) Przeciwdziedzina y∈ Miejsca zerowe 0 + kπ, k∈C Okres 2π Funkcja trygonometryczna cosinus Wykres funkcji y=cos x Własności: Parzystość Funkcja cosinus jest parzysta, tzn cos(-x) = cos (x) Dziedzina x∈ R (zbiór liczb rzeczywistych) Przeciwdziedzina y∈ Miejsca zerowe π/2 + kπ, k∈C Okres 2π Funkcja trygonometryczna tangens Wykres funkcji y=tg x Własności: Parzystość Funkcja tangens jest nieparzysta Dziedzina x∈ R – {x = π/2 + kπ, k∈C (zbiór liczb rzeczywistych z wyjątkiem x = π/2 + kπ, k∈C) Przeciwdziedzina y∈ R Miejsca zerowe 0 + kπ, k∈C Asymptoty pionowe kπ/2, k∈C Okres π Funkcja trygonometryczna cotangens Wykres funkcji y=ctg x Własności: Parzystość Funkcja cotangens jest nieparzysta Dziedzina x∈ R – {x =0 + kπ, k∈C (zbiór liczb rzeczywistych z wyjątkiem x = 0 + kπ, k∈C) Przeciwdziedzina y∈ R Miejsca zerowe π/2 +kπ, k∈C Asymptoty pionowe kπ, k∈C Okres π Wartości funkcji trygonometrycznych dla 0º, 15º, 30º, 45º, 60º, 75º, 90º radiany 0 {\displaystyle 0} π 12 {\displaystyle {\frac {\pi }{12}}} π 6 {\displaystyle {\frac {\pi }{6}}} π 4 {\displaystyle {\frac {\pi }{4}}} π 3 {\displaystyle {\frac {\pi }{3}}} 5 π 12 {\displaystyle {\frac {5\pi }{12}}} π 2 {\displaystyle {\frac {\pi }{2}}} stopnie 0 ∘ {\displaystyle 0^{\circ }} 15 ∘ {\displaystyle 15^{\circ }} 30 ∘ {\displaystyle 30^{\circ }} 45 ∘ {\displaystyle 45^{\circ }} 60 ∘ {\displaystyle 60^{\circ }} 75 ∘ {\displaystyle 75^{\circ }} 90 ∘ {\displaystyle 90^{\circ }} sin {\displaystyle \sin } 0 {\displaystyle 0} 6 − 2 4 {\displaystyle {\tfrac {{\sqrt {6}}-{\sqrt {2}}}{4}}} 1 2 {\displaystyle {\tfrac {1}{2}}} 2 2 {\displaystyle {\tfrac {\sqrt {2}}{2}}} 3 2 {\displaystyle {\tfrac {\sqrt {3}}{2}}} 6 + 2 4 {\displaystyle {\tfrac {{\sqrt {6}}+{\sqrt {2}}}{4}}} 1 {\displaystyle 1} cos {\displaystyle \cos } 1 {\displaystyle 1} 6 + 2 4 {\displaystyle {\tfrac {{\sqrt {6}}+{\sqrt {2}}}{4}}} 3 2 {\displaystyle {\tfrac {\sqrt {3}}{2}}} 2 2 {\displaystyle {\tfrac {\sqrt {2}}{2}}} 1 2 {\displaystyle {\tfrac {1}{2}}} 6 − 2 4 {\displaystyle {\tfrac {{\sqrt {6}}-{\sqrt {2}}}{4}}} 0 {\displaystyle 0} tg {\displaystyle \operatorname {tg} } 0 {\displaystyle 0} 2 − 3 {\displaystyle 2-{\sqrt {3}}} 3 3 {\displaystyle {\tfrac {\sqrt {3}}{3}}} 1 {\displaystyle 1} 3 {\displaystyle {\sqrt {3}}} 2 + 3 {\displaystyle 2+{\sqrt {3}}} nieokreślony {\displaystyle {\text{nieokreślony}}} ctg {\displaystyle \operatorname {ctg} } nieokreślony {\displaystyle {\text{nieokreślony}}} 2 + 3 {\displaystyle 2+{\sqrt {3}}} 3 {\displaystyle {\sqrt {3}}} 1 {\displaystyle 1} 3 3 {\displaystyle {\tfrac {\sqrt {3}}{3}}} 2 − 3 {\displaystyle 2-{\sqrt {3}}} 0 {\displaystyle 0} 1 TRIGONOMETRIJSKE FUNKCIJE DVOSTRUKOG UGLA Formule su: 1. sin2α=2sinαcosα 2. cos2α=cos α−sin2 α 3. α α α 1 2 2 2 tg tg tg − = 4. α α α ctg ctg ctg

Tożsamością trygonometryczną nazywamy pewną zależność między funkcjami trygonometrycznymi. Do podstawowych tożsamości trygonometrycznych zaliczyć możemy: \({sin^2 x+ cos^2 x = 1}\) tzw. jedynka trygonometryczna \({tgx \cdot ctgx = 1}\) Funkcje trygonometryczne sumy oraz różnicy kątów: \(sin(x+y) = sinx cos y +cosx siny\) \(sin(x-y)=sinxcosy - cosxsiny\) \(cos(x+y) = cosxcosy-sinxsiny\) \(cos(x-y)=cosxcosy+sinxsiny\) \({tg(x+y)={{tgx+tgy} \over {1-tg x \cdot tgy}}}\) \(tg(x-y)={{tgx - tgy} \over {1+tgx \cdot tgy}}\) \(ctg(x+y)={{ctgx \cdot ctgy -1} \over {ctg x + ctg y}}\) \(ctg(x-y)={{ctgx \cdot ctgy +1} \over {ctgx - ctgy}}\) Suma oraz różnica funkcji trygonometrycznych: \(sinx+siny = 2sin{{x+y} \over 2} \cdot cos{{x-y} \over 2}\) \(sinx - siny = 2sin {{x-y} \over 2} {\cdot cos {{x+y} \over 2}}\) \(cosx + cos y = 2cos {x+y \over 2} {\cdot cos {{x-y} \over 2}}\) \(cosx - cos y = -2sin {x+y \over 2} {\cdot sin {x-y \over 2}}\) \(tgx+tgy= {{sin(x+y) }\over {cosx \cdot cos y}}\) \(tgx - tg y = {{sin(x-y) \over {cos x \cdot cos y}}}\) \(ctgx + ctg y = {{sin(x+y)} \over {sinx \cdot siny}}\) \(ctgx - ctg y = {{sin(x-y)} \over {sinx \cdot siny}}\) Funkcje kąta podwójnego: \(sin2x = 2sinx cos x\) \(cos2x = cos^2x-sin^2x = 2cos^2x -1\) \(tg2x = {{2tg x} \over {1-tg^2x}}\) \(ctg2x = {{ctg^2x -1} \over {2ctgx}}\) Funkcje połowy kąta: \({|sin {x \over 2} |= \sqrt{{1-cosx} \over 2}}\) \({|cos {x \over 2} | = \sqrt{{1+cosx} \over 2}}\) \({|tg {x \over 2} | = \sqrt{{1-cosx} \over {1+cosx}}}\) \({|ctg{x \over 2} | = \sqrt {{1+cosx} \over {1-cosx}}}\) Odwrotności funkcji trygonometrycznych: \(sinx = {1 \over csc x}\) \(cosx = {1 \over sec x}\) \(tg x = {{{sin x} \over {cosx} }= {1 \over ctgx}}\) \(ctgx = {{cos x \over sin x} = {1 \over tgx}}\) Parzystość oraz nieparzystość funkcji trygonometrycznych: funkcje nieparzyste: sinus, tangens, cotangens \(sin(-x) = -sinx\) \(tg(-x) = -tgx\) \(ctg(-x) = - ctgx\) funkcje parzyste: cosinus \(cos(-x) = cosx\)

Tablica wartości funkcji trygonometrycznych. Start / Wzory maturalne / Tablica wartości funkcji trygonometrycznych. α [°] sin α. cosβ. tg α. β [°] 0. 0,0000.
W tabli poniżej przedstawiono wartości funkcji trygonometrycznych wybranych kątów przedstawionych w radianach i stopniach. \(\alpha\) \(\text{sin} \: \alpha\) \(\text{cos} \: \alpha\) \(\text{tg} \: \alpha\) \(\text{ctg} \: \alpha\) \(\text{radiany}\) \(\text{stopnie}\) \(0\) \(0\) \(0\) \(1\) \(0\) \(-\) \(\dfrac{\pi}{12}\) \(15\) \(\dfrac{\sqrt{6} - \sqrt{2}}{4}\) \(\dfrac{\sqrt{6} + \sqrt{2}}{4}\) \(2 - \sqrt{3}\) \(2 + \sqrt{3}\) \(\dfrac{\pi}{10}\) \(18\) \(\dfrac{\sqrt{5} - 1}{4}\) \(\dfrac{\sqrt{10 + 2 \sqrt{5}}}{4}\) \(\dfrac{\sqrt{25 - 10 \sqrt{5}}}{5}\) \(\sqrt{5 + 2 \sqrt{5}}\) \(\dfrac{\pi}{8}\) \(22 \dfrac{1}{2}\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\) \(\sqrt{2} -1\) \(\sqrt{2} + 1\) \(\dfrac{\pi}{6}\) \(30\) \(\dfrac{1}{2}\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{\sqrt{3}}{3}\) \(\sqrt{3}\) \(\dfrac{\pi}{4}\) \(45\) \(\dfrac{\sqrt{2}}{2}\) \(\dfrac{\sqrt{2}}{2}\) \(1\) \(1\) \(\dfrac{\pi}{3}\) \(60\) \(\dfrac{\sqrt{3}}{2}\) \(\dfrac{1}{2}\) \(\sqrt{3}\) \(\dfrac{\sqrt{3}}{3}\) \(\dfrac{5}{12} \pi\) \(75\) \(\dfrac{\sqrt{6} + \sqrt{2}}{4}\) \(\dfrac{\sqrt{6} - \sqrt{2}}{4}\) \(2 + \sqrt{3}\) \(2 - \sqrt{3}\) \(\dfrac{\pi}{2}\) \(90\) \(1\) \(0\) \(-\) \(0\) \(\pi\) \(180\) \(0\) \(-1\) \(0\) \(-\) \(\dfrac{3}{2} \pi\) \(270\) \(-1\) \(0\) \(-\) \(0\) \(2 \pi\) \(360\) \(0\) \(1\) \(0\) \(-\) \(\dfrac{\sqrt{2 - \sqrt{2}}}{2}\)
Ez a pont szíven ütött. Készíts Excelben táblázatot a fok-radián átváltásról és a sin-cos-tg-ctg függvények adott helyen felvett értékéről. Ha javasolhatom, akkor ehelyett inkább nyisd ki a függvénytábládat. Többet érsz vele. Kezdem úgy érezni, hogy. sin = ac , cos =bc , tg = ab , ctg = ba .
Wykres funkcji sinus wygląda tak: Wykres funkcji cosinus wygląda tak: Wykres funkcji tangens wygląda tak: Wykres funkcji cotangens wygląda tak: Na powyższych rysunkach pokazałem jak najlepiej rysować wykresy funkcji trygonometrycznych na kratkowanym papierze. Z takich dokładnych rysunków można np.: odczytać wartości funkcji trygonometrycznych dla konkretnych kątów, wyprowadzać wzory redukcyjne, rozwiązywać równania i nierówności trygonometryczne. Wykresy wszystkich funkcji trygonometrycznych dokładniej omówimy sobie w kolejnych rozdziałach.
Funkcje trygonometryczne z których korzystamy w trygonometrii na poziomie szkolnym to sinus ( sin s i n ), cosinus ( cos c o s) oraz tangens ( tg t g ). Choć każda z tych funkcji jest nieco inna, to łączy je wspólny cel – każda z tych funkcji pokazuje nam jaki jest stosunek długości boków trójkąta prostokątnego względem jego
MATERIAŁ MATURALNY > funkcje trygonometryczne TABLICE WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH Wartości funkcji trygonometrycznych, dla różnych miar kątów, można odczytać z tablicy: Tablica Z tablic możemy korzystać w dwóch celach:1) Możemy odczytać wartość danej funkcji, dla danego wartość tangensa kąta o mierze .Dla podanego kąta i funkcji, odczytujemy wartość: Możemy więc zapisać, że tangens wynosi 0,2679: 2) Możemy odczytać, z jakim kątem mamy do czynienia, mając podaną wartość danej miarę kąta, którego cosinus wynosi 0, podanego kąta i funkcji odczytujemy wartość. Szukamy w kolumnie funkcji cosinus podanej wartości (0,6023), a jeżeli nie ma jej w tabeli, szukamy wartości najbliższej do danej (dla naszego przykładu będzie to wartość 0,6018): Kąt ma więc w przybliżeniu miarę . Funkcje trygonometryczne i ich wartości odczytywane z tabeli, wykorzystujemy do obliczania długości poszczególnych boków lub miary kątów ostrych w trójkącie 1. Oblicz długość nieznanej przyprostokątnej trójkąta: Rozwiązanie:Mamy podaną długość tylko jednego boku. Nie możemy więc skorzystać z twierdzenia Pitagorasa. Ponieważ znamy miary kątów trójkąta, możemy wykorzystać funkcje trygonometryczne. Oczywiście mamy do wyboru aż dwa kąty i do każdego po cztery funkcje. Nie ze wszystkich funkcji możemy tu jednak było możliwe obliczenie jakiejś długości z danej funkcji, stosunek boków jaki otrzymamy musi zawierać bok, jaki chcemy obliczyć i bok który mamy. Z tego powodu nie możemy na przykład skorzystać z sinusa kąta , który jest równy stosunkowi boku „b” przez bok „c”.Skorzystamy z funkcji tangens kąta , bo zawierać będzie boki a i b : Przykład miary kątów trójkąta: Rozwiązanie:Tu także musimy wybrać odpowiednią obliczyć miarę danego kąta, wybieramy taką funkcję, aby oba boki jakie pojawią się w stosunku były od kąta . Znane boki, to dla tego kąta: przyprostokątna położona dalej (a), oraz przeciwprostokątna (c). Skorzystamy więc z funkcji sinus:

Các hàm lượng giác thể hiện mối liên hệ chiều dài các cạnh và độ lớn các góc của tam giác vuông. Có thể định nghĩa các hàm lượng giác của góc A, bằng việc dựng nên một tam giác vuông chứa góc A. Trong tam giác vuông này, các cạnh được đặt tên như sau:

16 lipca, 2016 9 marca, 2018 Tablice trygonometryczne sin, cos, tg, ctg dla podstawowych kątów z przedziału 0-360 stopni. We wpisie znajdują się tabele podstawowych wartości funkcji trygonometrycznych. Przejdź do spisu treści Tablica sinusów: Tablica cosinusów: Tablica tangensów: Tablica cotangensów: Zadania z trygonometrii Interaktywne tablice trygonometryczne online Interaktywne tablice trygonometryczne online: sin, cos, tg, ctg dla kątów 0-360 z dokładnością z zakresu 0-9 miejsca po przecinku. Spis treści Tablice sinus (tablice sinusów) Tablice cosinus (tablice cosinusów) Tablice tangens (tablice tangensów) Tablice cotangens (tablice cotangensów) Przykładowe zadania: Zadanie 17, Matura 2017 poziom podstawowy Książki: Tablice matematyczne Witold Mizerski [buybox-widget category="book" ean="9788373503175"] XPjMt.
  • 6lfwgv3bdf.pages.dev/14
  • 6lfwgv3bdf.pages.dev/13
  • 6lfwgv3bdf.pages.dev/98
  • 6lfwgv3bdf.pages.dev/43
  • 6lfwgv3bdf.pages.dev/14
  • 6lfwgv3bdf.pages.dev/40
  • 6lfwgv3bdf.pages.dev/16
  • 6lfwgv3bdf.pages.dev/45
  • tablica trygonometryczna sin cos tg ctg