Wykres funkcji sinus wygląda tak: Wykres funkcji cosinus wygląda tak: Wykres funkcji tangens wygląda tak: Wykres funkcji cotangens wygląda tak: Na powyższych rysunkach pokazałem jak najlepiej rysować wykresy funkcji trygonometrycznych na kratkowanym papierze. Z takich dokładnych rysunków można np.: odczytać wartości funkcji trygonometrycznych dla konkretnych kątów, wyprowadzać wzory redukcyjne, rozwiązywać równania i nierówności trygonometryczne. Wykresy wszystkich funkcji trygonometrycznych dokładniej omówimy sobie w kolejnych rozdziałach.
Funkcje trygonometryczne z których korzystamy w trygonometrii na poziomie szkolnym to sinus ( sin s i n ), cosinus ( cos c o s) oraz tangens ( tg t g ). Choć każda z tych funkcji jest nieco inna, to łączy je wspólny cel – każda z tych funkcji pokazuje nam jaki jest stosunek długości boków trójkąta prostokątnego względem jego
MATERIAŁ MATURALNY > funkcje trygonometryczne TABLICE WARTOŚCI FUNKCJI TRYGONOMETRYCZNYCH Wartości funkcji trygonometrycznych, dla różnych miar kątów, można odczytać z tablicy: Tablica Z tablic możemy korzystać w dwóch celach:1) Możemy odczytać wartość danej funkcji, dla danego wartość tangensa kąta o mierze .Dla podanego kąta i funkcji, odczytujemy wartość: Możemy więc zapisać, że tangens wynosi 0,2679: 2) Możemy odczytać, z jakim kątem mamy do czynienia, mając podaną wartość danej miarę kąta, którego cosinus wynosi 0, podanego kąta i funkcji odczytujemy wartość. Szukamy w kolumnie funkcji cosinus podanej wartości (0,6023), a jeżeli nie ma jej w tabeli, szukamy wartości najbliższej do danej (dla naszego przykładu będzie to wartość 0,6018): Kąt ma więc w przybliżeniu miarę . Funkcje trygonometryczne i ich wartości odczytywane z tabeli, wykorzystujemy do obliczania długości poszczególnych boków lub miary kątów ostrych w trójkącie 1. Oblicz długość nieznanej przyprostokątnej trójkąta: Rozwiązanie:Mamy podaną długość tylko jednego boku. Nie możemy więc skorzystać z twierdzenia Pitagorasa. Ponieważ znamy miary kątów trójkąta, możemy wykorzystać funkcje trygonometryczne. Oczywiście mamy do wyboru aż dwa kąty i do każdego po cztery funkcje. Nie ze wszystkich funkcji możemy tu jednak było możliwe obliczenie jakiejś długości z danej funkcji, stosunek boków jaki otrzymamy musi zawierać bok, jaki chcemy obliczyć i bok który mamy. Z tego powodu nie możemy na przykład skorzystać z sinusa kąta , który jest równy stosunkowi boku „b” przez bok „c”.Skorzystamy z funkcji tangens kąta , bo zawierać będzie boki a i b : Przykład miary kątów trójkąta: Rozwiązanie:Tu także musimy wybrać odpowiednią obliczyć miarę danego kąta, wybieramy taką funkcję, aby oba boki jakie pojawią się w stosunku były od kąta . Znane boki, to dla tego kąta: przyprostokątna położona dalej (a), oraz przeciwprostokątna (c). Skorzystamy więc z funkcji sinus:
Các hàm lượng giác thể hiện mối liên hệ chiều dài các cạnh và độ lớn các góc của tam giác vuông. Có thể định nghĩa các hàm lượng giác của góc A, bằng việc dựng nên một tam giác vuông chứa góc A. Trong tam giác vuông này, các cạnh được đặt tên như sau:
16 lipca, 2016 9 marca, 2018 Tablice trygonometryczne sin, cos, tg, ctg dla podstawowych kątów z przedziału 0-360 stopni. We wpisie znajdują się tabele podstawowych wartości funkcji trygonometrycznych. Przejdź do spisu treści Tablica sinusów: Tablica cosinusów: Tablica tangensów: Tablica cotangensów: Zadania z trygonometrii Interaktywne tablice trygonometryczne online Interaktywne tablice trygonometryczne online: sin, cos, tg, ctg dla kątów 0-360 z dokładnością z zakresu 0-9 miejsca po przecinku. Spis treści Tablice sinus (tablice sinusów) Tablice cosinus (tablice cosinusów) Tablice tangens (tablice tangensów) Tablice cotangens (tablice cotangensów) Przykładowe zadania: Zadanie 17, Matura 2017 poziom podstawowy Książki: Tablice matematyczne Witold Mizerski [buybox-widget category="book" ean="9788373503175"]
XPjMt. 6lfwgv3bdf.pages.dev/146lfwgv3bdf.pages.dev/136lfwgv3bdf.pages.dev/986lfwgv3bdf.pages.dev/436lfwgv3bdf.pages.dev/146lfwgv3bdf.pages.dev/406lfwgv3bdf.pages.dev/166lfwgv3bdf.pages.dev/45
tablica trygonometryczna sin cos tg ctg